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Abstract

We develop a hybrid atomistic–continuum scheme for simulating micro- and nano-flows with heat transfer. The
approach is based on spatial ‘‘domain decomposition’’ in which molecular dynamics (MD) is used in regions where atom-
istic details are important, while classical continuum fluid dynamics is used in the remaining regions. The two descriptions
are matched in a coupling region where we ensure continuity of mass, momentum, energy and their fluxes. The scheme for
including the energy equation is implemented in 1-D and 2-D, and used to study steady and unsteady heat transfer in chan-
nel flows with and without nano roughness. Good agreement between hybrid results and analytical or pure MD results is
found, demonstrating the accuracy of this multiscale method and its potential applications in thermal engineering.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Heat transfer in micro- and nano-fluidic devices is important to many engineering applications [1–3]. How-
ever, calculating the behavior of such devices poses a great challenge. As system dimensions shrink to small
scales, the assumptions of continuum hydrodynamics break down. In particular, the molecular mean free path
may no longer be negligible and macroscopic constitutive relations and boundary conditions become inade-
quate. In principle, this problem can be resolved by using a fully atomistic description such as molecular
dynamics (MD) simulations. However, MD simulations on current computers are typically limited to dimen-
sions less than 100 nm and times much shorter than a microsecond. Thus they can not treat most systems of
experimental interest.
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In recent years, a new class of hybrid approaches has been developed that combines the strengths of
atomistic and continuum approaches. They are based on the observation that the breakdown of the
continuum description is primarily confined to small spatial regions, for example near fluid–fluid or
fluid–solid interfaces. An atomistic description is required in these regions, but the remaining bulk regions
can be described with less computationally intensive continuum equations. The key difficulty is in
constructing algorithms for coupling the very different continuum and atomistic descriptions at their
interface.

Early coupling schemes included fluid flux but not heat transfer. O’Connell and Thompson [4] coupled
atomistic and continuum simulations at opposite ends of an overlap region. The mean atomistic velocity at
the end of the atomistic region was constrained to follow the continuum solution using a relaxation method.
The main limitation of their approach was that it did not allow mass flux between atomistic and continuum
regions. This has been overcome in several ways in subsequent work. Hadjiconstantinou et al. [5] developed
a Maxwell Demon method to simulate incompressible flow and used a Schwarz iteration method to ensure
the consistency of MD and continuum descriptions. Results from their approach for steady channel flow
with an obstacle [5] and the moving contact line problem [6] are consistent with full MD simulations.
Ren et al.[15] proposed a general multi-scale method for micro-fluidics. In their scheme, a macroscopic sol-
ver is adopted in the whole computational domain while the missing data, such as the flux and boundary
conditions are evaluated from local MD simulations. Flekkoy et al. [7] proposed a scheme based on the
continuity of mass and momentum flux for simulating isothermal, compressible flow. More recently, Nie
et al. [13] developed a robust hybrid model based on‘‘constrained dynamics’’ for simulating incompressible
flows. They successfully applied the method to explore the physics at singular points in driven cavity flows
[14,16]. With the aid of multi-grid techniques, they were able to resolve flows from molecular to millimeter
scales [16].

Recent work has extended hybrid methods to include heat flow. Wagner et al. generalized the work of Fle-
kkoy et al. to include energy transfer, and verified the conservation of mass, momentum and energy in sim-
ulations of homogeneous flow [8,9]. Buscalioni et al. [10–12] adopted a similar flux coupling scheme and
demonstrated their approach by simulation of transverse and longitudinal waves. Both of these approaches
considered compressible flow.

In this paper, we extend the hybrid method for isothermal, incompressible flow developed in Refs.
[13,14,16] to include heat transfer. In particular, ‘‘constrained dynamics’’ is used to couple the atomistic
and continuum velocities in the momentum equations, and atomistic and continuum temperatures in the
energy equations are coupled by rescaling particle velocities. The approach is tested against fully atomistic
simulations of heat transfer through a fluid layer confined between flat and rough surfaces. The effect of
wall-induced flows and the unsteady response to a temperature increase are also considered. In all cases,
the hybrid method reproduces purely atomistic results in a small fraction of the computational time and with
less noise.

The outline of the paper is as follows. In Section 2, we describe the numerical algorithm with special atten-
tion to the new features associated with the heat equation. In Section 3, we demonstrate the success of the
scheme through simulations of 1D and 2D, steady and unsteady, heat transfer in channels. A brief summary
and concluding remarks are presented in Section 4.
2. Numerical algorithm

2.1. Domain decomposition

Fig. 1 illustrates the general scheme of domain decomposition in our calculations. The simulation is divided
into two spatial domains, the particle (atomistic) domain indicated by dots and the continuum domain rep-
resented by shading. Molecular dynamics simulations are performed in the atomistic domain, and classical
continuum fluid dynamics equations are solved on a grid in the continuum domain. There is an overlap region
between these two domains which typically extends a few times the continuum grid spacing. Both molecular
dynamics and continuum calculations are performed in this overlap region. The key element of the algorithm
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Fig. 1. Schematic of the hybrid method. The continuum description is used in the shadowed region and the atomistic description is used in
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provide boundary conditions for continuum simulations. The continuum equations are solved on a staggered grid with ux defined at
asterisks, uy defined at crosses, and p and T defined at triangles.
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is the scheme for coupling the particle and continuum solutions to ensure continuity of fluxes across the over-
lap region.

The MD domain in our simulations contains both a solid wall and a fluid. The interactions between fluid
atoms are modeled with a truncated and shifted Lennard-Jones potential,
V LJðrÞ ¼ 4�
r
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where � is the characteristic binding energy, and r the atomic diameter. The interactions are truncated at
rc = 2.2r to reduce the computational cost. To allow comparison with previous results [4,13,14], we use the
same fluid density, q = 0.81mr�3, where m is the particle mass. Fluid and solid atoms also interact with a Len-
nard-Jones potential, but with a reduced binding energy �wf = 0.75� that leads to a no-slip boundary
condition.

Two layers of solid atoms form the wall (Fig. 1). They are arranged to form a (111) surface of an fcc crystal
with the same density as the fluid. The first layer is held fixed. Atoms in the second layer are coupled to their
nearest-neighbors by ideal harmonic springs with spring constant 500�/r2. This corresponds to having inter-
actions about nine times stronger than those within the fluid, and ensures that the crystal structure is retained.

We track the time evolution of all particle trajectories by integrating their equations of motion using the
velocity Verlet scheme with time step DtMD = 0.005s, where s = (mr2/�)1/2 is the characteristic time of the Len-
nard-Jones potential. The wall temperature is controlled by coupling atoms in the second layer to a Langevin
thermostat [17]. Their equation of motion is
dmiviðtÞ
dt

¼ f iðtÞ � nmiviðtÞ þWiðtÞ; ð2Þ
where vi is the velocity of the ith particle and fi(t) the force from other particles. The second term on the right
side of Eq. (2) represents the damping force and n is the damping rate. The third term, Wi(t), is a random force
sampled from a Gaussian distribution with zero mean and a standard deviation of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nkBT=DtMD

p
. Here T is

the desired temperature and kB is Boltzmann’s constant. The damping rate controls the effective thermal con-
ductivity from the wall to the thermal bath represented by the thermostat. We use a value n = 1.0s�1 that is
small enough that solid atoms are underdamped, but large enough that the temperature increase of the wall is
small. The results are relatively insensitive to changes of n by a factor of 2, but the temperature rise of this wall
layer becomes significant at much smaller n (Section 3.2). In the continuum region, the following two-dimen-
sional incompressible Navier–Stokes equations are solved,
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The first equation enforces incompressibility on the fluid velocity u. In the momentum equation, p is the pres-
sure and l the dynamic viscosity. The final heat equation contains the specific heat cv and thermal conductivity
k. The transport coefficients l, cv and k must be consistent with the atomistic potential in order to ensure con-
tinuity in the overlap region. They are determined through preliminary MD simulations as discussed in Sec-
tion 3.1.

The N–S equations are integrated using the projection method with mesh size of Dx = Dy = 6.25r. A stag-
gered grid [18] is implemented as illustrated in Fig. 1. Pressure and temperature are defined at the centers of
cells (triangles). A Neumann boundary condition is applied in solving the pressure Poisson equation. The x

and y components of the velocity are defined at the middle of the vertical (asterisks) and horizontal (crosses)
edges of the cells, respectively. To ensure numerical accuracy, the continuum equations must be integrated
with a time step DtFD that is much smaller than the characteristic time of flows on the scale of the grid.
The characteristic times for velocity and temperature at low Reynolds number are qDxDy/l = 15.2s and
qcvDxDy/k = 10s, using the transport coefficients obtained in Section 3.1. The time scale on which atoms sam-
ple different kinetic energies is of order the velocity autocorrelation time tvv � 0.14s [4]. As described below,
thermal averages of atomistic quantities are evaluated on intervals of width DtFD, and choosing this larger
than tvv ensures that atoms sample some of their thermal distribution over the averaging interval. The simu-
lations below used DtFD = 50DtMD = 0.25s. Runs with DtFD = 1s gave equivalent results, but little speedup
since most of the compute time is in the MD domain.

2.2. Boundary conditions on continuum from particles

At the bottom of the overlap region in Fig. 1, the particle description provides boundary conditions for the
continuum equations (P! C). The quantities required by the continuum description are mean velocities and
temperatures that are readily determined from spatial and temporal averages of particle properties. For exam-
ple, the continuum equations require values of uy at the crosses along y = y0 and values of ux at the asterisks
along y = y0 � Dy/2. These are obtained by averaging the velocities of all particles in an area Dx by Dy cen-
tered on the point of interest, over the entire period Lz in the z direction, and over a time interval DtFD.

The temperature is obtained in the center of the continuum cells. The instantaneous temperature in cell J is
given by
kBT J ;MDðtÞ ¼
2

3ðNJ � 1Þ
XNJ

i
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2
miðvi � uJ Þ2: ð4Þ
where uJ is the mean velocity evaluated by averaging over the NJ atoms in the cell. Subtracting the mean veloc-
ity ensures that the expression has Galilean invariance and the prefactor reflects the fact that there are
3(Nj � 1) remaining degrees of freedom each with energy kBT/2. Note that we will consider fairly small frac-
tional changes in T and it is important to use velocities from the velocity-Verlet algorithm to get sufficiently
accurate temperatures. The temperature is averaged over DtFD before being passed to the continuum solution.

Averages of particle quantities necessarily include thermal fluctuations, while the continuum equations do
not. In some cases these fluctuations may be of interest [19], but in the cases considered below our goal is to
ensemble average until fluctuations become negligible. In purely atomistic simulations of steady state behavior
this can be done by averaging over long time intervals but the averaging time grows rapidly with system size.
The reason is that there are long-lived hydrodynamic modes associated with flow of particles and heat. For a
system with dimension L, these would correspond to qL2/l and qcvL

2/k in the low Reynolds number limit.
Averages must be taken over much longer times to reduce the noise in these modes. The effect of these
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long-lived modes can be reduced by considering an ensemble of independent systems, where the noise is nec-
essarily decorrelated.

To benchmark our results we will frequently compare to purely atomistic MD simulations. In this case,
results are averaged over 10 different realizations of the same physical system. These were typically run in par-
allel on different processors, making efficient use of a small local cluster. In the hybrid method we also consider
10 different realizations of the MD region. Their velocities and temperatures are averaged and input to a single
continuum simulation. One could instead couple each atomistic simulation to a separate continuum calcula-
tion and then average the results at the end. However this generates larger statistical errors. The reason is that
fluctuations in each atomistic region couple to themselves through the long-lived hydrodynamic fluctuations
and only average out over longer times. Averaging the realizations before they couple to the hydrodynamic
modes reduces this effect. As a result, the errorbars for purely MD simulations are always substantially larger
than for the hybrid method. This represents another important advantage of the hybrid approach.

2.3. Boundary conditions on particles from continuum

One common difficulty in all atomistic/continuum coupling methods is that information about macroscopic
quantities does not uniquely specify the microscopic state of particles. The goal of continuum to particle cou-
pling is to constrain the mean particle behavior without introducing unphysical artifacts associated with the
constraint or the termination of the particle domain. The overlap region helps to minimize these effects.

The mean particle velocity in each cell J is constrained to follow the continuum solution uJ using the
method described in Ref. [13]. The constraint is derived by finding the extremum of the time integral of the
Lagrangian for particles subject to the nonholonomic constraint,
1

NJ
Rivi ¼ uJ ðtÞ: ð5Þ
The resulting equation for particles in cell J is
€xi ¼
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LJðrijÞ and DuJ/Dt indicates the material derivative. The last two terms ensure that the
mean particle velocity tracks the continuum solution by subtracting the sum of all forces on particles in the cell
and adding the material derivative of the continuum solution. More details are provided in Ref. [13]. O’Con-
nell and Thompson implemented a similar approach but imposed the constraint through a relaxation equation
with a characteristic time constant. This introduces time delays in the coupling of continuum and particle
descriptions that can alter dynamic solutions.

In the examples described below, the velocity constraint was imposed on cells between y1 and y3 in Fig. 1.
This constraint on the mean velocity is not sufficient to prevent some particles from leaving the particle
domain. To confine particles, an additional nonlinear force is applied to particles between y3 and y4
F y ¼ �ap0r
ðy � y3Þ

1� ðy � y3Þ=ðy4 � y3Þ
; ð7Þ
where p0 = 3.16�/r3 is the equilibrium pressure corresponding to the fluid density q = 0.81mr�3 and a is a con-
stant of order one. In our simulations, y4 � y3 = Dy and a = 1. This leads to a relatively smoothly varying po-
tential that does not introduce density oscillations that might propagate beyond the overlap region.

Werder et al. [20] have proposed an alternative confining force. By using the pair correlation function in the
equilibrium fluid to construct the confining force, one can have the density of fluid atoms drop rapidly to zero
without introducing density oscillations. This may be important in fluids with long range interactions and cor-
relation lengths. Werder et al. found substantial density shifts and oscillations with other algorithms. However
problems they attributed to the algorithm used here and in earlier work [13,14,16] resulted from an incorrect
implementation. In particular, they did not adjust the number of particles in the simulation to give the correct
density or include the buffer region above y3. This region allows the density to be constant over the range
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where continuum and atomistic solutions are coupled (y1 < y < y3). The density then decays smoothly to zero
over about 1r as y increases above y3. The force is slowly varying over this range of y. There is a small com-
putational cost associated with atoms in the buffer region, but it is negligible for the short-range interactions
considered here. The buffer region is also helpful in equilibrating atoms that are added to the system as
described next. To maintain mass conservation, the particle flux across y = y3 is calculated based on the con-
tinuum velocity field. The change in number of atoms in a cell in DtFD/m is
Dn ¼ �AquyDtFD=m; ð8Þ

where A = DxDz is the area of the cell surface. The change in number is integrated until its magnitude exceeds
an integer n 0. Then if the flux is negative, the n 0 atoms closest to y4 are removed. If n 0 is positive, n 0 atoms are
inserted at evenly spaced times over the following DtFD. The fractional remainder is added to the flux at the
next time interval. Particles are inserted at random positions in the x � z plane and 1r above the particle in the
cell that has the largest y (always well below y4). The initial velocity of an inserted particle is equal to the con-
tinuum velocity in the corresponding cell. The peculiar velocities of atoms in the buffer region between y3 and
y4 are coupled to a Langevin thermostat. The set temperature is the continuum solution extrapolated to y3 and
n = 1s�1. This insures that atoms entering the coupling region are properly thermalized. To constrain the par-
ticle temperature to the continuum solution for y < y3, we used a simple velocity rescaling algorithm that is
also used in standard MD simulations [21]. At each time step, the particle temperature in a cell is calculated
from Eq. (4). The velocities are then rescaled so that the microscopic temperature TJ,MD equals the set tem-
perature from the continuum solution TJ,C:
vi ¼ uJ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
T J ;C

T J ;MD

s
ðvi � uJÞ: ð9Þ
Note that it is important to rescale only the thermal fluctuations around the mean velocity uJ.
One of the weaknesses of velocity rescaling thermostats is that they remove the intrinsic fluctuations

between kinetic and potential energy [21]. As discussed in the next subsection, the temporal fluctuations in
kinetic energy are directly related to the specific heat and are substantial in small systems. Our use of relatively
large cells reduces artifacts associated with maintaining a strictly constant kinetic energy and the thermostat is
only applied in the outer part of the overlap region. Other thermostats were also considered, but all introduce
an additional time lag over which the temperature is controlled. While this was not a problem in steady state
simulations, it affected dynamic simulations. Combining velocity rescaling with the constraint equation (Eq.
(6)) removes all time delays in the coupling algorithm.

The impact of velocity rescaling on our simulations was minimized by applying it to relatively large vol-
umes DxDyDz. In addition, applying rescaling at a distance from the edge of the continuum region that is lar-
ger than the correlation length ensures that spurious oscillations decay before reaching the purely atomistic
region. In our simulations the rescaling was only applied in the upper 2Dy of the MD region between y1

and y3 (Fig. 1). The spatial separation between the thermostatted region (y > y1) and the region that constrains
the continuum solution (y < y0) plays another important role. The separation ensures that both continuum
and atomistic systems have a heat flux determined by the temperature difference between y0 � Dy and
y1 + Dy. The two fluxes are equal on average if the continuum conductivity is correctly fit to the response
of the particles. In contrast, if the thermostat is applied down to y0, the atomistic and continuum heat flux
can differ due to the flow of heat to the thermostat. This produced a small difference between the temperature
derivatives in MD and continuum regions in plots like Figs. 2 and 3b.

3. Results and discussion

3.1. Determination of fluid transport coefficients

As noted above, the bulk fluid transport coefficients in Eq. (3) must be consistent with transport in the
atomistic region in order to ensure continuity across the overlap region. The dynamic shear viscosity l, ther-
mal conductivity k and the heat capacity cv were determined from equilibrium MD simulations with N = 4096
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particles at q = 0.81mr�3. The simulation domain had periodic boundary conditions with periods Lx = 16.7r,
Ly = 19.3r, Lz = 15.7r along x, y and z, respectively. In principle the transport coefficients should be param-
eterized as a function of temperature. However, they vary slowly with temperature, and the temperature in
most of our simulations only varies between 1.1�/kB and 1.2�/kB. Thus we evaluated the coefficients at the
intermediate temperature of 1.16�/kB. After the system equilibrated at this T, an MD run of 4 · 106 steps
was performed. The kinetic energy, shear stress qxy and microscopic heat current j were stored for each time
step and used to evaluate coefficients as described below.

The heat capacity cv can be evaluated directly in the microcanonical ensemble as
cv ¼
3kB

2m
1� 2N

3ðkBT Þ2
hðdEkÞ2i

" #�1

; ð10Þ
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where T is the temperature evaluated from the average kinetic energy per particle Ek (Eq. (4)), dEk is the devi-
ation from this average, and the angular bracket denotes the ensemble average. This equation gave
cv = 2.43kB/m for the heat capacity of the fluid.

The shear viscosity l and the thermal conductivity k can be evaluated from the same simulation using the
Green-Kubo formulas [22]. The shear viscosity is related to the time correlation function of the shear stress
qxy,
l ¼ V
kBT

Z 1

0

hqxyð0Þ � qxyðtÞidt; ð11Þ
where V is the volume and the quantity in brackets is the autocorrelation function of the shear stress. The
microscopic expression for the components of the stress tensor is
qab ¼ �
1

V

X
i

miviavib þ
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X
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" #
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where rij is the vector between particles i and j, Fij the force between them, and a and b indicate the x, y or z

component.
The corresponding Green-Kubo formula for the thermal conductivity k is
k ¼ V

3kBT 2

Z 1

0

hjð0Þ � jðtÞidt; ð13Þ
where the microscopic heat current j is given by
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and the site energy ei is
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Based on our simulation results, the shear viscosity is l = 2.08�sr�3 and the thermal conductivity is k = 7.7kB/
rs with errorbars smaller than the last significant digit. These results are consistent with values obtained from
nonequilibrium simulations in Refs. [4,23] and are used in the following hybrid simulations.

3.2. Steady flow

3.2.1. 1D channel flow without roughness

As a first demonstration of our scheme, we simulate 1D heat transfer between flat parallel walls. The fluid is
confined between stationary solid walls at y = 0 and y = H = 68.8r, and periodic boundary conditions with
period Lx = 18.8r and Lz = 4.82r are imposed along x and z, respectively. As mentioned above, the simula-
tion domain consists of three regions. The continuum equations (Eq. (3)) are solved for y > 18.8r and atom-
istic simulations are performed for y < 43.8r. The two regions overlap over the central region of width
4Dy = 25.0r. The continuum region could of course be extended without significant computational effort
but it is kept small to allow comparison to purely atomistic simulations.

The bottom and top walls were thermostatted at temperatures 1.1�/kB and 1.2�/kB, respectively. After the
simulation reached steady state, we averaged results over an additional 3000s. Ten independent simulations in
the MD region were used to further reduce statistical fluctuations. The steady state temperature distribution is
shown by the open symbols in Fig. 2. Note the excellent agreement of results from the continuum region
(squares) and particle region (triangles). The results follow the linear temperature profile predicted by Fou-
rier’s law of heat conduction. We would like to emphasize that the perfect matching of the temperature dis-
tribution with Fourier’s Law implies that both the temperature and heat flux in the overlap region have a
smooth transition, which is exactly the goal of the multiscale method.
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The temperature of the bottom solid wall is also shown in Fig. 2. Note that it is slightly higher than the
thermostat temperature. This reflects the finite thermal conductivity between wall atoms and the thermostat.
As noted in Section 2.1, increasing the damping rate n, facilitates heat flow and lowers the temperature rise of
the wall. There is a much larger temperature jump at the interface between fluid and solid. This reflects the
Kapitza resistance for thermal flow across the interface between phases [24,25]. One of the goals of multiscale
simulations with heat flux is to capture the dependence of this resistance on atomistic effects, and this can read-
ily be done using our approach.

In the second example, we kept the same wall temperatures but moved the top wall at fixed velocity U = 1r/
s to the right. Purely atomistic simulations were performed to validate the results and these also provided the
appropriate boundary conditions for the continuum solution in the hybrid calculation. The no-slip condition
is satisfied at the top wall, but there is a temperature jump due to the Kapitza resistance. Rather than including
the Kapitza resistance [24,25] explicitly in the continuum calculation, we used the atomistic temperature pro-
file to determine the appropriate temperature boundary condition on the top wall. A better solution would be
to use atomistic simulations near both top and bottom walls, as is done in Section 3.3. Both MD and hybrid
simulations were run for 3000s after reaching equilibrium and averaged over ten independent MD runs.

Fig. 3a shows the steady state streamwise velocity distribution for both hybrid (open symbols) and pure
MD (filled symbols) results. Excellent agreement between the velocity distributions is achieved. Fig. 3b pre-
sents the temperature distribution along the y direction. The small deviations between the methods are within
the statistical errors, which are comparable to the symbol size for pure MD results and smaller for the hybrid
method. In contrast to the results for stationary walls, the temperature distribution is nonlinear. Heat is pro-
duced almost uniformly across the fluid by viscous dissipation. Flow of this heat to the wall produces an extra
parabolic contribution to the temperature profile [26].

3.2.2. 2-D heat transfer with nano roughness

To further test the applicability of our hybrid scheme, we simulate heat transfer in a more complicated sys-
tem. As shown in Fig. 4, nanoscale roughness is added to the bottom wall. The lattice structure of the wall is
extended to make a square bulge of side length 6.25r centered at x = 0.5Lx, with Lx = 56.3r. All other param-
eters are the same as in the previous section. As there, pure MD simulations were first performed for compar-
ison. The fluid temperature at the top wall was obtained by extrapolating these results, and used as the
boundary condition for the continuum region of the hybrid calculation. Fig. 5a–c show the temperature dis-
tributions along the y direction at three locations along x for stationary walls. Hybrid and pure MD results are
represented by open triangles and squares respectively. All the results were obtained by averaging over 5000s
after reaching the steady state and over ten independent runs. As illustrated in Fig. 5, the hybrid results agree
very well with the full MD results.

Simulations were also performed with the top wall sliding at U = 1r/s while the bottom wall was kept sta-
tionary. Figs. 6 and 7 present the comparison between hybrid and pure MD results. Fig. 6a–c show the veloc-
ity distributions at specific locations along x. The hybrid results are indicated by triangles and MD results by
squares. The temperature distributions at the same locations along x are shown in Fig. 7. Deviations between
the two methods are within the statistical errors, which are larger for T and for the pure MD results. Purely
continuum calculations with a fixed Kapitza resistance do not reproduce these results for rough walls.
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Overlap

Continuum

U

y

x
z MD

T1 =1.1ε /kB

Fig. 4. Schematic of the hybrid simulation domain for channel flow with a rough bottom wall. There is one square bump of edge 6.25r per
period Lx = 56.3r along x.
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Fig. 5. Comparison of hybrid (triangles) and purely atomistic (squares) results for the steady state temperature distribution above a
stationary rough wall as a function of y at (a) x = 0.28Lx, (b) x = 0.5Lx and (c) x = 0.72Lx. The results were averaged over 5000s at steady
state and ten independent runs to reduce thermal fluctuations. Errorbars are smaller than the symbol size.
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Fig. 6. Comparison of velocity distributions as a function of y at (a) 0.28Lx, (b) 0.5Lx and (c) 0.72Lx from hybrid (triangles) and pure MD
(squares) simulations for a rough bottom wall and a top wall moving at U = 1r/s. The results were averaged over 5000s at steady state and
ten independent runs to reduce thermal fluctuations. Errorbars are smaller than the symbol size.
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Fig. 7. Comparison of steady state temperature distributions as a function of y at (a) 0.28Lx, (b) 0.5Lx and (c) 0.72Lx from hybrid and
pure MD simulations for a system with rough bottom wall and top wall moving at U = 1r/s. The results were averaged over 5000s at
steady state and ten independent runs to reduce thermal fluctuations. Errorbars are smaller than the symbol size.
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3.3. Unsteady flow

To test our hybrid method for time dependent heat transfer, we study the transient response to a sudden
increase in the temperature of the top wall. The channel height is H = 112.5r and both walls are stationary.
Since the temperature drop between the fluid and the top wall is time dependent, it is important to treat both
walls atomistically. As shown in Fig. 8, the hybrid simulation contains three domains with MD at top and
bottom and continuum in the central region. Pure MD simulations were performed as a reference.

Initially, the simulation was equilibrated for 100s with the entire system thermostatted at 1.1�/kB. At t = 0,
the thermostat temperature for the top wall was suddenly raised to 1.2�/kB. The temperature of the fluid was
allowed to evolve freely for t > 0. The characteristic time for heat to diffuse across the system in continuum
theory is of order tH = qcvH

2/k = 3235s. The linear steady state profile should be attained at times much
longer than tH. At much shorter times the temperature should follow the solution to the heat equation for
an infinite system: T ðy; tÞ ¼ T 2 � ðT 2 � T 1ÞU½ð1� y=HÞ

ffiffiffiffiffiffiffiffiffiffiffi
tH=4t

p
�, where U is the probability integral. The nor-

malized temperature derivative at the top wall should be hoT=oy ¼ ðT 2 � T 1Þ
ffiffiffiffiffiffiffiffiffiffiffi
tH=pt

p
, and the linear fit should
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Fig. 9. Comparison of temperature profiles from hybrid and pure MD simulations of a time dependent system. The results were averaged
from (a) 100–200s and (b) 1000–3000s. The results were averaged over 50 independent runs to reduce thermal fluctuations. Errorbars for
the MD simulations are shown, and errorbars for the hybrid simulations are smaller than the symbol size.
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Fig. 8. Schematic of geometry for hybrid simulations of unsteady flow. The continuum description is used in the middle shaded region and
the molecular dynamics method is used in both the upper and lower regions.
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reach T1 at y=H ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffi
pt=tH

p
Atomistic walls may introduce other time delays associated with the flow of

heat from the thermostat to solid atoms and from the solid to the fluid.
Fig. 9a shows the average temperature profile over the time interval from t = 100s to 200s. To improve sta-

tistics for this short time interval, both MD and hybrid simulations were averaged over 50 realizations. The
two methods are consistent within the errorbars, which are larger for the pure MD simulations. Note that the
errors at different y/H are strongly correlated. These correlations were studied by using different ensemble sizes
and examining spatio-temporal fluctuations in temperature. These tests show that the spatial correlations
result from heat transport in slow hydrodynamic modes. From the continuum solution to the heat equation
we would expect the initial slope to extrapolate to zero at about y/H = 0.62 for t = 150s. The actual decay in
Fig. 9a is steeper. This indicates that there is an extra delay in heat propagation, presumably due to the heat
transfer at the wall/fluid interface. Note that the temperature drop between wall and fluid is very large for
these early times. Fig. 9b shows the average profile for t between 1000s and 3000s. Agreement between hybrid
and pure MD is very good and the errorbars are smaller due to the longer time-averaging interval. Results
from both methods are very close to the final steady state solution. This is not surprising, since over this inter-
val the time is larger than tH/p and thus the continuum estimate for the slope near the wall is more shallow
than the steady state solution.

4. Summary and conclusions

Our previous hybrid atomistic/continuum algorithm for incompressible flow [13] has been extended to
include heat transfer. MD simulations are used in interfacial regions where atomistic effects are important,
while continuum equations are used in bulk regions where fluxes and material properties vary slowly. Both
solutions are followed in an overlap region and provide boundary conditions for each other at the outer edges
of the overlap region. Continuity of momentum is ensured by ‘‘constrained dynamics’’ that forces the mean
atomistic velocity to follow the continuum solution [13]. In this new work, we also include the energy equa-
tion. The microscopic temperature is constrained to follow the continuum solution by rescaling the fluctuation
of atomistic velocities about the mean. The boundary condition for the continuum solution is determined by
the mean microscopic temperature. Maintaining a buffer zone between the locations where these two temper-
ature constraints are applied ensures continuity of heat flux through the overlap region.

The new approach was tested against purely atomistic simulations and analytic solutions. Specific examples
included steady state temperature distributions and flow profiles between smooth and rough walls with and
without shear. In addition, unsteady temperature distributions in response to a sudden change in wall temper-
ature were examined. In all cases the hybrid method reproduced fully atomistic simulations in a small fraction
of the compute time. Of particular importance is the Kapitza resistance at the wall/fluid interface. This atom-
istic effect was captured in all cases. The results illustrate the potential of our hybrid approach for investiga-
tions of heat flow in micro/nano engineering applications, particularly for complex rough walls.

One advantage of the hybrid method is that the number of degrees of freedom that must be integrated is
reduced. Most of the computational effort is confined to the interfacial regions that are treated atomistically.
These may be an arbitrarily small fraction of the total volume [16]. The size of the continuum region consid-
ered in this paper was limited only by the desire to benchmark against purely atomistic results.

A second advantage of the hybrid method over purely atomistic simulations is that thermal fluctuations are
reduced. The reason is that thermal fluctuations only enter the small atomistic domain in the hybrid method,
while they are generated throughout the entire volume in MD simulations. Removing fluctuations may be
undesirable in simulations of processes such as droplet breakup where fluctuations play an intrinsic role. How-
ever in many cases one wishes to average out thermal fluctuations to determine the steady state or ensemble
average flow and temperature profiles. The hybrid method greatly accelerates such calculations by limiting the
size of the region producing fluctuations.

Despite this improvement, the computational effort associated with the hybrid method may still increase
rapidly with the size of the continuum region. The reason is that fluctuations in the atomistic region couple
to hydrodynamic modes with long time and length scales. These in turn couple back to the atomistic simula-
tion on their characteristic time scales. As a result, averaging must be performed on times longer than the
hydrodynamic mode. The effect of thermal fluctuations can be reduced by ensemble averaging results from
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the atomistic region before coupling to the continuum equations. Because of the long time scales of hydrody-
namic modes, reducing the noise before coupling to the modes is always more efficient than lengthy time
averaging.
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